Ermanno Lanconelli

Measures with the mean value property for L-harmonic functions: an inverse problem

Let L be a linear hypoelliptic second order PDO in divergence form with nonnegative characteristic form in \mathbb{R}^n . A probability measure μ in an open set Ω is said to have the mean value property for the L-harmonic functions in Ω if there exists a point $x_0 \in \overline{\Omega}$ such that

$$u(x_0) = \int_{\Omega} u(y) d\mu(y)$$

for every nonnegative solution to Lu = 0 in Ω . In this case we will say that (Ω, μ, x_0) is an *L*-triple. In this talk we present general positive answers to the following inverse problem. Let (Ω, μ, x_0) and (D, ν, x_0) be *L*-triples. If $\mu = \nu$ in $\Omega \cap D$, is it true that $\Omega = D$ (and hence $\mu = \nu$)?